This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

STUDIES IN CYCLODIPHOSPHAZANES: SOME REACTIONS OF HEXACHLOROCYCLODI- PHOSPHAZANES (I) WITH AMINO ACIDS

I. M. Abd-Ellah^a; E. H. M. Ibrahim^a; A. N. El-khazander^a

^a Chemistry Department, Faculty of Science, Al-Azhur University, Nasr City, Cairo, Egypt

To cite this Article Abd-Ellah, I. M., Ibrahim, E. H. M. and El-khazander, A. N.(1987) 'STUDIES IN CYCLODIPHOSPHAZANES: SOME REACTIONS OF HEXACHLOROCYCLODI- PHOSPHAZANES (I) WITH AMINO ACIDS', Phosphorus, Sulfur, and Silicon and the Related Elements, 31: 1, 13 — 18

To link to this Article: DOI: 10.1080/03086648708079336 URL: http://dx.doi.org/10.1080/03086648708079336

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

STUDIES IN CYCLODIPHOSPHAZANES: SOME REACTIONS OF HEXACHLOROCYCLODI-PHOSPHAZANES (I) WITH AMINO ACIDS

I. M. ABD-ELLAH,† E. H. M. IBRAHIM and A. N. El-KHAZANDER Chemistry Department, Faculty of Science, Al-Azhur University, Nasr City, Cairo, Egypt

(Received June 14, 1986 in final form August 5, 1986)

Interaction of 1,3diaryl-2,2,2-4,4,4-hexachlorocyclodiphosphazanes (I_{-e}) with glycine, α - and β -alanine are described. The structure of the obtained aminocyclodiphosphazanes (II-V) were proposed on the basis of microanalytical data, ir, uv, ${}^{1}H$ n.m.r. and mass spectra. The mechanism of the reaction is also discussed.

The reaction of hexachlorocyclodiphosphazanes (I) with amino compounds has been investigated in great detail.¹⁻⁷ Analogous reactions with amino acids have received much less attention.

We have recently⁸ shown that the reaction of hexachlorocyclodiphosphazanes (I) with bifunctional reagents (such as urea and thiourea derivatives) furnished geminal and nongeminal aminocyclodiphosphazanes.

In the present investigation, glycine, α - and β -alanine reacted with halophosph(V)azanes (I_{a-g}) in acetonitrile to give a cyclosubstitution at the phosphorus atoms. The analytical data suggest structure (II_{a-g}) and (III_{a-e}) for these materials.

[†] To whom correspondence should be sent.

No. of Compd.
$$R$$
 Z II_a C_6H_5 CH_2 — CO — II_b C_6H_4 — CI - p CH_2 — CO — II_c C_6H_4 — OCH_3 - O CH_2 — CO — II_d C_6H_4 — OCH - p CH_2 — CO — II_f C_6H_4 — CH_3 - p CH_2 — CO — II_f C_6H_4 — CH_3 - p CH_2 — CO — II_g C_6H_5 CH_3 CH_2 — CO — III_b C_6H_5 CH_2 — CO — III_b C_6H_5 CH_2 — CO — III_b C_6H_5 CH_2 — CO — III_b C_6H_4 — CH_3 - CO — III_b C_6H_4 — CH_3 - CO — III_b C_6H_4 — CO — $IIII_b$ C_6H_4 — CO — III_b C_6H_4 — CO — $IIII_b$ C_6H_4 — CO — $IIII_b$ C_6H_4 — CO — $IIII_b$ $C_6H_$

The assignment of the proposed structures (II_{a-g}) and (III_{a-e}) was based on: element analysis, the infrared spectra of these compounds showed the characteristic ν NH, ν C=O, ν P=O, ν P-N-H, ν P-O-C, and ν P-Cl absorption bands which are summarized in Table I, the 1 H n.m.r. spectra of (II_{a-g}) and (III_{a-e}) showed the characteristic proton signals, which are listed in Table II, the uv spectra showed the characteristic absorption band at 270-290 nm, characteristic for the phosphazane four-membered ring.

Further insight concerning the structure of these products was gleaned from a

TABLE I

Characteristic frequencies of cyclodiphosphazane derivatives

No. of	Stretching frequencies in cm ^{-1 10}										
compounds	NH	C=0	P=O	P—N—H	P	P—Cl	ОН				
IIa	3060	1680	_	2600	1050	530	_				
II _b	3100	1680	_	2600	1030	530					
IIc	3300	1680	_	2600	1030	500					
II_d	3200	1680	_	2600	1030	550	_				
II.	3200	1680		2600	1050	530	_				
Π_{t}	3300	1680		2600	1030	530	_				
II,	3200	1740	_	2550	1010	530	_				
II. III.	3200	1680	1250	2600	1050	510	_				
III <mark>b</mark>	3200	1680	1250	2550	1040	510	_				
III_c^{S}	3400	1660	1225	2600	1020	530	_				
III	3260	1660	1215	2600	1000	530	_				
III.	3400	1640	1235	2600	1010	500	_				
ΙV	3200	1750	_	2600	_	530	3450				
V	3300	1650	1260	2600	_	500	3500				

TABLE II	
Characteristic ¹ H n.m.r. spectra of cyclodiphosphazane derivatives (II-	V)

No. of compounds	Ar.	OCH ₃	CH ₃	Chemical shift δ i CH_2	n ppm. CH	NH†	COOH†	
IIa	7.0	_		2.3	_	8.0		
II _b	7.2	_	_	2.3	_	7.4	_	
II _c	7.0	3.8	_	2.3	_	8.6(br.)		
ΙΙ <mark>΄</mark>	6.9	3.8	_	2.5	_	7.9`´	_	
II.	7.0	_	2.0	2.5	_	7.9		
II,	7.5	_	2.0(s)	_	$3.3(q)^{a}$	9.2(s)	_	
			& 1.1(d)		(1)		_	
II.	7.5		$\stackrel{\smile}{-}$	2.4(t)	_	8.7		
II _g III _a	7.0	_	2.0	~	_	7.6	_	
III	7.2	_	1.5(d)	_	3.3(q) ^a	6.5(s)		
III	7.2		_	2.5(br.)		9.5`´		
III	6.9	_	1.2	2.5(br.)	_	10.65		
III.	7.0	3.8		2.6(br.)	_	9.60		
IV	6.9	3.8	1.4(d)		3.3(q) ^a	8.0	11.0	
v	7.4		_	2.5	_	7.8	13.0	

† Disappeared on addition of D₂O.

^a q means quartlet with $J_{H-H} = 10$ Hz.

^b The singlet at $\delta = 2.0$ ppm is characteristic for the methyl protons attached to the aromatic ring in compound (II_f), while the doublet at $\delta = 1.1$ ppm ($J_{H-H} = 7.0$ Hz) is characteristic for the methyl protons of the amino acid.

consideration of their mass spectra. Thus, the mass spectrum of compound (III_c) show the molecular peak at 418 m/e. While, the mass spectrum of (II_a) showed an intense peak at 347 m/e as the highest mass in the spectrum corresponding to $(M-2\times57)$ according to the following proposed fragmentation pathway for compound (II_a).

$$\begin{array}{c} R \\ NH, Cl \\ P \\ CO \neq 0 \end{array}$$

$$\begin{array}{c} NH, Cl \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} Cl \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} Cl \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} Cl \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \neq CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\ O \Rightarrow CO \end{array}$$

$$\begin{array}{c} R \\ NH \\$$

The interaction of o-Chlorophenylhexachlorocyclodiphosphazane (I_b) with glycine and o-Anisidylhexachlorocyclodiphosphazane (I_d) with α -alanine led to the formation of products for which we propose structures (IV) and (V) respectively.

$$R = C_6H_4$$
—Cl-o

 $R = C_6H_4$ —Cl-o

 $R = C_6H_4$ —OCH₃-o

The assignment of structure (IV) and (V) for the above compounds was based on: element analysis, uv spectra which demonstrated the presence of an absorption at $270-290 \,\mathrm{cm^{-1}}$ corresponding to the phosphazane four-membered ring, ir spectra which showed the characteristic vNH, vC=0, vP=0, vP=NH and vP=Cl stretching vibrations (see Table I), the appearance of the terminal P=0 group in (V) and its elemental analysis demonstrates that only one chlorine atom of the cyclodiphosphazane (I) has been replaced by an organic radical, the 1H n.m.r. spectra of (IV) and (V) are in good agreement with the proposed structures (see Table II).

MECHANISTIC PROPOSAL

We propose that the interaction between the amino acid and the hexachlorocyclodiphosphazane (I) is a nucleophilic reaction, involving direct substitution of halogen atoms by a nucleophilic attack on phosphorus, according to the following reaction scheme;

$$C_{3}P \xrightarrow{N} PCl_{3} \xrightarrow{NH_{3}CH_{2}COO^{-}} Cl_{3}P \xrightarrow{N} Cl_{N} NH_{2}CH_{2}COO^{-}$$

$$intermediate$$

$$I_{3-g}$$

$$NH_{3}CH_{2}COO^{-}$$

$$-HQ$$

$$C_{3}P \xrightarrow{NH_{3}CH_{2}COO^{-}} Cl_{3}P \xrightarrow{NH_{3}CH_{2}COO^{-}} Cl_{2}P \xrightarrow{NH_{3}$$

The direction of the course of the reaction depends on the nature of the amino acid and the type of substituents present (R). It is expected, however, that if (R) group attached to nitrogen is bulky and the amino acid contain a bulky group such an interaction will not be facile due to steric factors and led to the formation of an intermediate such as compound (IV) and (V).

The formation of the terminal P=O group in some products may be due to decomposition of (II) or air oxidation of the intermediate products.

The possibility, also exists that the nongeminal replacement pattern observed with compound (IV) and (V) may result from electron supply from the substituent to phosphorus, which lowers the reactivity of a Cl—P—N— unit below that of a Cl—P—Cl unit, or also due to steric factors in which little difficulty is encountered in effecting complete replacement of halogens in spite of

Downloaded At: 07:18 30 January 2011

TABLE III
Analytical data of the Aminocyclodiphosphazane derivatives (II-V)

								1	1	١	16.2	l	36.2	21.3
P%	13.52	11.69	12.27	11.68	12.63 12.68	12.29 11.99	12.63	15.17	14.19	14.78	14.30	13.26	10.66	12.32
id/calc N%	12.15	10.80	10.00	10.50	11.00	10.50 10.83	11.00	10.00	10.45	1		8.20	10.10	7.50 8.16
Microanalysis found/calc C% H% N%	3.47	3.00	1	1	1	I	l	3.94	3.70	}		I	1 1	
Microana C%	41.65	36.80	1	ļ	I	I	I	45.20 44.44	43.80	1		1	١	1
Formula	C16H16N4P2O4C12	C ₁₆ H ₁₄ N ₄ P ₂ O ₄ Cl ₄	$C_{18}H_{20}N_4P_2O_6Cl_2$	$C_{18}H_{20}N_4P_2O_6Cl_2$	$C_{18}H_{20}N_4P_2O_4Cl_2$	C ₂₀ H ₂₄ N ₄ P ₂ O ₄ Cl ₂	C ₁₈ H ₂₀ N ₄ P ₂ O ₄ Cl ₂	$C_{16}H_{17}N_3P_2O_3CL_2$	$C_{15}H_{15}N_3P_2O_3CI_2$	$C_{15}H_{15}N_3P_2O_3Cl_2$	$C_{17}H_{19}N_3P_2O_3Cl_2$	$C_{17}H_{19}N_3P_2O_5Cl_2$	$C_{16}H_{16}N_4P_2O_4Cl_6$	C ₁₇ H ₂₀ N ₃ P ₂ O ₅ Cl ₃
Yield %	54	35	35	8	61	39	63	32	\$	14	7	91	11	15
Color	brown	brown	yellow	brown	brown	pale brown	yellow	brown	pale	yellow	yellow	yellow	gray	pale brown
m.p.°C	260	160 210	215	22				205	220	225	220	225	225	190
Reactants Amino acid	glycine (1.50 g: 0.02 mole)	glycine (1.50 g: 0.02 mole)	glycine	(1.50 g; 0.02 mole) glycine (1.5 g: 0.02 mole)	glycine (1.50 g: 0.02 mole)	α-alanine (1.78 g; 0.02 mole)	β-alanine (1 78 g· 0 (7) mole)	glycine (1.50 g: 0.02 mole)	α-alanine (1.78 g: 0.07 mole)	β-alanine (1.78 g· 0.07 mole)	β-alanine (1.78 g: 0.07 mole)	β-alanine (1.78 g: 0.02 mole)	glycine (1.50 gr. 0.02 mole)	a-alanine (1.78 g; 0.02 mole)
Rea Cyclodiphosphazane	I _a (4.57 g: 0.01 mole)	(5 26 g; 0.01 mole)	(2.2.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2.3.2.3	(4.83 g; 0.01 mole) 1g (5.17 g:60.01 mole)	(4.85 g: 0.01 mole)	(4.85 g; 0.01 mole)	(4 85 g: 0 01 mole)	(4.85 g: 0.01 mole)	(4 57 g: 0 01 mole)	(4.57 g; 0.01 mole)	(4.85 g; 0.01 mole)	(*.02 g, 0.01 mole) I _f (\$ 17g: () ()1 mole)	(5.176, 5.51 mole) I _b (5.26 a: 0.01 mole)	(5.17 g; 0.01 mole)
No. of compounds	II.	ll,	п	П	ιι	П	п	III	Шь	Ш	PIII	ııı	2	>

the steric retardation which must be involved and only a so called intermediate as the above compounds would be possible.

EXPERIMENTAL

Microanalytical determinations were carried out by the microanalytical laboratory, Cairo University. Infrared spectra were recorded on a Unicam Sp 1200 spectrophotometer (KBr technique). Ultraviolet spectra were recorded on a Unicam Sp 8000 ultraviolet recording spectrophotometer. ¹H n.m.r. spectra were measured on a Varian EM-360L, 60 MHz spectrometer and mass spectrometric measurements were carried out using a Finnigan MAT 1125 mass spectrometer by the direct inlet system.

PREPARATION OF COMPOUNDS

The preparation and purification of hexachlorocyclodiphosphazanes (I_{a-g}) has been described previously. ¹¹⁻¹² All the amino compounds used were B. D. H. reagentgrade products.

SYNTHESIS OF AMINOCYCLODIPHOSPHAZANE DERIVATIVES (II-V): GENERAL PROCEDURE

The solid amino acid (0.02 mole) was added in small portions to a well stirred solution of the hexachlorocyclodiphosphazane (I) (0.01 mole) in 100 ml acetonitrile during $\frac{1}{2}$ hour. After the addition was complete, the reaction mixture was heated under reflux for three hours. The solid formed subsequently dissolved with the evolution of HCl gas. After the completion of the reaction (HCl gas ceased to evolve), the reaction mixture was filtered while hot and the solid obtained was washed several times with acetonitrile, diethyl ether and dried in vacuo to give the corresponding aminocyclodiphosphazane derivatives (II-V); the data obtained are listed in Table III.

REFERENCES

- 1. E. H. M. Ibrahim and N. E. Amine, Egypt J. Chem., 22, No. 4, 307-312 (1979).
- 2. R. A. Shaw, Pure Appl. Chem., 52, 1083 (1980).
- 3. R. A. Shaw and M. Woods, Inorg. Nucl. Chem. Lett., 17, 181 (1981).
- 4. R. A. Shaw and M. Woods, J. Chem. Soc., Dalton, Trans., 1980 (1977).
- 5. R. A. Shaw and M. Woods, J. Chem. Soc. Dalton. Trans., 840 (1980).
- 6. S. S. Krishnamurthy and R. A. Shaw, Inorg. Nucl. Chem. Lett., 13, 407 (1977).
- 7. R. A. Shaw and M. Woods, J. Chem. Soc. Dalton. Trans., 621 (1984).
- I. M. Abd-Ellah, E. H. M. Ibrahim and A. N. El-Khazandar, accepted for publication in Phosphorus and Sulfur J. (1986).
- 9. M. Becke-Goehring and B. Bopple, Z. Anorg. Chem., 322, 239 (1963).
- 10. H. R. Allcock, Phosphorus-Nitrogen Compounds, Academic Press, New York, p. 436 (1972).
- 11. A. C. Chapman, N. L. Paddock and H. T. Searle, J. Chem. Soc., 1825 (1961).
- 12. I. N. Zhmurova and A. V. Kirsanov, Zh. Obsch. Khim., 32, 2576 (1963).